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KINETIC EQUATION FOR ONE-DIMENSIONAL MOTION OF SPHERES

UDC 517.53/57R. M. Garipov

A dynamic system of identical spheres in a vessel is considered as a gas model. The spheres and the
walls of the vessel are assumed to be absolutely rigid and elastic. For three-dimensional motion, the
chain of Bogolyubov equations is derived in a form not available in the literature. It is shown that
the reason for the noninvertibility of the Boltzmann kinetic equation is an approximate description of
the dynamic system. For the one-dimensional motion of the spheres along the straight-line segment
between the walls, the Bogolyubov chain is closed in the class of multiplicative distributions by a
limiting transition in which the number of spheres tends to infinity and the sum of their diameters
remains constant. The obtained kinetic equation differs substantially in structure from the Boltzmann
equation. For example, it is invertible. It implies the equations of multivelocity hydrodynamics. The
existence of the solution in the large in time is established. It is shown that a closed kinetic equation
for the one-particle projection does not exist in the class of arbitrary distributions.

Key words: ergodicity, noninvertibility, s-particle projection, kinetic equation, s-multiplicative
distribution, crystallographic group, hydrodynamics.

1. Ergodicity and Noninvertibility. The model of molecules as absolutely rigid elastic spheres has played
an important role in the kinetic theory of gases. The problem of the derivation of the kinetic equation was discussed
in the beginning of the 20th century. When Boltzmann derived his famous kinetic equation for this system, the
equation turned out to be invertible, i.e., invariant under a change in the time direction, although the starting
system of equations of motion for the spheres and the laws of their collisions are invertible [1]. This inconsistency
received strong criticism at that time. Analyzing his derivation, Boltzmann had to add an additional molecular
chaos hypothesis to the dynamic system considered. Subsequently, Bogolyubov gave the following mathematical
formulation of this hypothesis [2].

Bogolyubov considered the Liouville equation for the probability density w(t, x1, v1, . . . , xN , vN ) (t is time;
xk and vk are the coordinates of the center and velocity of the kth sphere). On the boundary of the configuration
space of the points x = (x1, . . . , xN) — cylinders of the form |xi − xj | = d1 (d1 is the diameter of the spheres;
|xk| is the length of the vector xk ∈ R

3; 1 ≤ i < j ≤ N) — and on the vessel walls, the function w satisfies the
boundary conditions that follow from the collision laws. In the space of the velocities v = (v1, . . . , vN), boundaries
are absent.

The boundary problem for the function w is equivalent to the initial dynamic system but has a number of
advantages. First, because the spheres are considered identical, the initial function w(0, x, v) can be chosen to be
symmetric, i.e., constant under an arbitrary permutation of its variables, which that corresponds to a permutation
of the spheres. Then, this property is preserved for t > 0. Second, we can consider the s-particle projections
obtained by integrating the probability density over the phase space of N − s particles:

ws(t, x1, v1, . . . , xs, vs) =
∫

w(t, x1, v1, . . . , xN , vN ) dxs+1 dvs+1 · · · dxN dvN

(s = 1, 2, . . . ).
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If s is small, these functions are physically measurable. For example, Nw1 has the meaning of the average par-
ticle density in the phase space of one particle. The Boltzmann kinetic equation is written for the one-particle
projection w1.

For definiteness, let external force fields be absent. Then, the system of equations of motion for the spheres
is written as

ẋi = vi, v̇i = 0 (i = 1, . . . , N), (1.1)

where the dot above denotes the derivative with respect to time. We denote by Ω′ ⊂ R
3 the vessel which contain

N identical spheres, and by Ω ⊂ Ω′ the closed subset separated from the vessel walls by the distance d1/2. The
vessel walls ∂Ω′ are assumed to be a smooth surface such that a sphere of diameter d1 touches it at only one point.
Then, for each point x of the boundaries ∂Ω of the domain Ω, there is a single nearest point x′ ∈ ∂Ω′ and the
vector n = (x′ − x)2d−1

1 is the common outward normal to ∂Ω and ∂Ω′ at the points x and x′. The vessel walls,
as well as the spheres, are assumed to be absolutely rigid and elastic. The centers of the spheres xi can be at any
point from Ω. The phase space of system (1.1) is equal to Φ = Q × R

3N , where

Q = ΩN \
( ⋃

1≤i<j≤N

{x: |xi − xj | < d1}
)
.

The reflection of the trajectory [x(t), v(t)], where 0 ≤ t < ∞, of system (1.1) from the boundary ∂Φ of the
phase space Φ is determined by the collision laws. As a result of collision, the coordinate x ∈ ∂Q does not change
and the velocity v ∈ R

3N suddenly takes a new value v′:

v′
i = vi − 2(vi · n)n if xi ∈ ∂Ω and vi · n > 0; (1.2)

v′
i = vi − (v · e)e, v′

j = vj + (v · e)e if |xi − xj | = d1 and v · e > 0. (1.3)

Here n is the outward normal to ∂Ω, e = (xj − xi)d−1
1 , and v = vi − vj . These are pair collisions. The set of

trajectories of measure 0 undergoes higher-order collisions and is discarded.
We write the Liouville equation

∂w

∂t
+

N∑
i=1

vi · ∇iw = 0, (1.4)

where ∇i is the gradient over xi. The solution w of Eq. (1.4) has a constant value along the trajectory of system
(1.1); therefore, as the boundary conditions, it is natural to assume that this value is retained for the reflection of
the trajectory from the boundary: w(t, x, v) = w(t, x, v′) for (x, v) ∈ ∂Φ. Because the inverse map v′ → v is given
by the same formulas (1.2) and (1.3), this equality is valid at all points of the boundary of the phase space and not
only at the ends of the incoming trajectories.

The solution of the Liouville equation satisfying the indicated boundary condition is uniquely determined by
its initial value, so that there arises a linear operator St: w(0, x, v) → w(t, x, v), which depends on the parameter t.
It is easy to prove that the integral of w over Φ remains constant in time; therefore, the normalization of the

probability density
∫

Φ

w dxdv = 1 is conserved. The last property also implies the adopted boundary conditions.

Equation (1.4) and the boundary conditions are satisfied by a function of the form

w = f(E),

where E = (|v1|2 + . . . + |vN |2)/2 is the energy of the system (if the mass of the sphere is set equal to unity) and
f is an arbitrary function of one variable. If w(0, x, v) = 0 for E ≥ E0, then w(t, x, v) = 0 for E ≥ E0 at any time t.

To obtain the equation for the s-particle projection ws, it is necessary to integrate Eq. (1.4) over the phase
space of spheres with numbers s + 1, . . . , N , i.e., over the cross section Φ̄ of the phase space Φ for fixed xi and vi

(1 ≤ i ≤ s). The s-particle projection ws was defined above as the integral of w over Φ̄. The set Φ̄ has the form
Q̄×R

3(N−s), and its boundary has the form ∂Q̄×R
3(N−s), where Q̄ is the cross section of the configuration space Q

for the fixed coordinates xi (1 ≤ i ≤ s). The boundary ∂Q̄ of the cross section Q̄ is the union of the nonintersecting
(except for the set of measure 0) components equal to the intersections of the following surfaces with Q̄:

524



— the walls
N⋃

i=s+1

{x: xi ∈ ∂Ω};

— the cylinders ⋃
s<i<j≤N

{x: |xi − xj | = d1};

— the spheres
s⋃

i=1

N⋃
j=s+1

{x: |xi − xj| = d1}.

The integral over ∂Q̄ is equal to the sum of the integrals over the given components.
The time derivative can be factored outside the integral sign of the projection ws. Let us consider the

integral of the next s terms. Since only the boundary spheres depend on xi (1 ≤ i ≤ s), we have
∫

Φ̄

vi · ∇iw dx̄ dv̄ = vi · ∇iws −
N∑

j=s+1

∫

|xi−xj|=d1

vi · (xi − xj)d−1
1 dx̄ dv̄. (1.4′)

Here dx̄ dv̄ = dxs+1 dvs+1 · · · dxN dvN ; in the second part of the equality, the integration is performed over the set

({x: |xi − xj | = d1} ∩ Q̄) × R
3(N−s),

dxj denotes the differential of the surface area of the sphere |xi − xj | = d1.
According to the Gauss–Ostrogradskii formula, the integral of the remaining terms of the Liouville equation

is transformed to the surface integral of (vs+1 ·νs+1 + . . .+vN ·νN )w over ∂Φ̄, where (νs+1, . . . , νN) is the outward
normal to ∂Q̄.

Let us consider the integral over the wall {x: xi ∈ ∂Ω} (s < i ≤ N). Because the outward normal to
this surface has one nonzero component νi = n, the function vi · nw is integrated over the Cartesian product
(the intersection with Q̄) of this wall and R

3(N−s). For fixed x̄ = (xs+1, . . . , xN ), we perform integration over
v̄ = (vs+1, . . . , vN ). The integration domain R

3(N−s) is divided into two subdomains by the inequalities vi · n > 0
and vi · n < 0. In the subdomain vi · n > 0, we make the change of the integration variable vi → v′

i using the
mapping (1.2). Because

vi · n = −v′
i · n, dvi = dv′

i,

the result is an integral that differs from the integral over the remaining subdomain vi ·n < 0 only in sign (and the
notation of the integration variable) by virtue of the boundary conditions on w. Thus, the integrals over the walls
are equal to zero.

Next, the outward normal to the cylinder {x: |xi − xj | = d1} (s < i < j ≤ N) has only two nonzero
components: νi = −(xi − xj)d−1

1 /
√

2 and νj = −νi. Therefore, we integrate the function

(vi − vj) · ((xj − xi)d−1
1 /

√
2 )w.

The domain of integration R
3(N−s) over v̄ is again divided into two subdomains by the inequality

(vi − vj) · (xj − xi) > 0

and the opposite inequality. In the integral over the first subdomain, we make the change of integration vari-
ables (1.3). By virtue of the equalities

(vi − vj) · (xj − xi) = −(v′
i − v′

j) · (xj − xi), dvidvj = dv′
idv′

j

and the boundary conditions w(t, x, v) = w(t, x, v′), this integral and the integral in the second subdomain cancel
each other. Thus, the integrals over the cylinders are also equal to zero.

The integrals over the spheres are retained. The normal to the sphere {x: |xi−xj| = d1} (1 ≤ i ≤ s < j ≤ N)
has only one nonzero component νj = (xi−xj)d−1

1 ; therefore, the function vj ·(xi−xj)d−1
1 w is integrated. Summing

these integrals over j and adding the result to the integral (1.4′), we see that the expression under the summation
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sign does not depend on the value of the subscript j because of the symmetry of the probability density w and the
set Q̄. Therefore, we can set j = s + 1 and replace the sum over j by the factor N − s. We finally obtain

∂ws

∂t
+

s∑
i=1

vi · ∇iws = Js+1 (s = 1, 2, . . . , N), (1.5)

where wN = w and JN+1 = 0; for s < N , we have

Js+1 = (N − s)
s∑

i=1

∫
(vi − vs+1) · (xi − xs+1)

× d−1
1 ws+1(t, x1, v1, . . . , xs+1, vs+1) dxs+1 dvs+1. (1.6)

Here the integration over xs+1 is performed over the segments of the spheres |xs+1 − xi| = d1 (i = 1, . . . , s)
that lie in Ω and do not overlap each other (dxs+1 is the differential of the surface area of the sphere), and the
integration over vs+1 is performed over the space R

3. The function ws has a range of definition and satisfies the
boundary conditions as the probability density of the dynamic system of s spheres. Indeed, for the projection ws,
the conditions xi ∈ Ω (1 ≤ i ≤ s) and the inequalities |xi − xj | ≥ d1 (1 ≤ i < j ≤ s) remain meaningful. The
subset Ψ ⊂ Φ̄ of measure 0 corresponds to collisions with the participation of the jth sphere (j > s); therefore,

ws(t, x1, v1, . . . , xs, vs) =
∫

Φ̄\Ψ

w(t, x, v) dx̄ dv̄.

Setting w(t, x, v) = w(t, x, v′) on the right of this equality, we obtain the boundary condition on ws that corresponds
to the collisions (1.2) and (1.3) involving only spheres with numbers 1, . . . , s. The statement is proved. The chain of
Bogolyubov boundary-value problems (1.5), (1.6) equivalent to the initial dynamic system (1.1)–(1.3) and, hence,
it is invertible, i.e., invariant under the change of variables t → −t and v → −v.

The chain of Bogolyubov equations is usually derived for the case of paired potential interaction of particles.
The collision integral in the form (1.6) that is not encountered in the literature.

Let us consider the collision integral J2 in more detail. We make the change of the integration variable
x2 → e = (x2 − x1)d−1

1 , where |e| = 1 and dx2 = d2
1de. Next, we divide the domain of integration R

3 over v2 into
two subdomains by the inequality (v1 − v2) · e > 0 and the opposite inequality. In the second subdomain, we make
the change of the integration variable e → −e and, according to the boundary conditions, we set

w2(t, x1, v1, x1 − ed1, v2) = w2(t, x1, v
′
1, x1 − ed1, v

′
2),

where (v1, v2) → (v′
1, v

′
2) is the mapping (1.3). To obtain the Boltzmann kinetic equation, it is necessary to assume

the equality

w2(t, x1, v
′
1, x1 − ed1, v

′
2) − w2(t, x1, v1, x1 + ed1, v2)


 w1(t, x1, v
′
1)w1(t, x1, v

′
2) − w1(t, x1, v1)w1(t, x1, v2) (1.7)

at (v1 − v2) · e > 0.

Consequently, this is the molecular chaos hypothesis. Then Eq. (1.5) for s = 1 takes the classical form
∂w1

∂t
+ v1 · ∇1w1 = (N − 1)d2

1

∫

(v1−v2)·e>0

(v1 − v2) · e

× (w1(t, x1, v
′
1)w1(t, x1, v

′
2) − w1(t, x1, v1)w1(t, x1, v2)) de dv2. (1.8)

In Eq. (1.8), the changes t → −t, v1 → −v1, and v2 → −v2 are no longer valid since it changes the integration
domain or, in the case of the simultaneous change e → −e, the left and right sides of the equation acquire
different factors ∓1. Thus, Eq. (1.8) is noninvertible. The noninvertibility arises because of the molecular chaos
hypothesis (1.7).

The noninvertibility paradox of the Boltzmann kinetic equation was solved by P. A. Ehrenfest and
T. A. Ehrenfest-Afanassjewa, who understood that the one-particle projection w1 does not uniquely character-
ize the state of the dynamic system or the complete function w [3]. Therefore, the function w1 evolves to a more
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probable value because of the uncontrolled changes in the dynamic system. From this it also follows that the
deterministic evolution of w1 is possible only in a narrow class of distributions w. Bogolyubov derives the kinetic
equation for w1 in the class of distributions w that possess the following property: each s-particle projection ws is
uniquely determined by the one-particle projection w1. However, he does not give any example of a distribution w

that belongs or does not belong to this class [2].
Sinai and Chernov [4] proved ergodicity for the dynamic system (1.1)–(1.3). The physical meaning of

ergodicity is as follows: irrespective of the initial state of a system with energy E0, the average time of residence
of the system in each neighborhood on the constant-energy surface E = E0 is identical if these neighborhoods have
the same area. The mathematical formulation is as follows: for any initial distribution w0, there exists a function
of one variable f such that

lim
t→∞

1
t

t∫

0

(Sτw0) dτ = f
( |v1|2

2
+ . . . +

|vN |2
2

)
. (1.9)

This statement is proved in an appropriate functional space. Does ergodicity leads to the molecular chaos hypothesis
or noninvertibility? No, it does not. Letting t → −∞ on the left of equality (1.9), we obtain the same function on
the right side. Thus, ergodicity does not distinguish one predominant direction of the two time directions.

2. Example of Noninvertibility. As shown in Sec. 1, the reason for the noninvertibility of the Boltzmann
kinetic equation is the approximation (1.7), i.e., an inaccurate, incomplete description of the dynamic system. At
the same time, a full description is meaningless since it cannot be verified experimentally. This point of view on
the nature of physical noninvertibility agrees with [3]. It is vividly illustrated by the following simple example.

In the Hilbert space L2 of quadratically integrable periodic functions with period 1, we define a unitary
operator U by the formula

(Uf)(x) = exp (2πix)f(x).

We consider the semigroup of operators {Un} with a discrete parameter n = 0, 1, 2, . . . as an analog of the one-
parameter semigroup {St} (see Sec. 1). For any functions f, g ∈ L2, we have

(Unf, g) =

1∫

0

exp (2πinx)f(x)g(x)∗ dx −→
n→∞ 0, (2.1)

where ( · , · ) is the scalar product in L2; the asterisk denotes complex conjugation. Because the function f(x)g(x)∗ is
absolutely integrable, this statement follows from the Riemann theorem. Is it possible to state for this reason that
the dynamic system {Un} is noninvertible? No, it is not because by letting n → −∞, we obtain the same zero in
the limit.

We assume that only the average value of the function f ∈ L2 is known:

f̄(x) = (Pf)(x) =

∞∫

−∞
(2πχ)−1/2 exp

(
− (x − y)2

2χ

)
f(y) dy.

Here χ > 0 is a small but fixed constant. Any measuring instrument performs similar averaging. The averaging
operator P is continuous and biunique but the inverse operator P−1 is unbounded and is not defined everywhere.
We have the mapping

f̄ = Pf → PUf = (PUP−1)Pf = (PUP−1)f̄ .

From this it follows that the evolution of the average quantities Unf is defined by the operator U ′ = PUP−1 and,
thus, a new semigroup {U ′n} arises.

To find the range of definition of the operator U ′, we expand the function f ∈ L2 in a Fourier series:

f(x) =
∞∑

k=−∞
ck exp (2πikx).

Then, the functions Uf and Pf have the kth Fourier coefficients ck−1 and b−k2
ck, respectively, where

b = exp (8π2χ) > 1. From this, using the Parseval formula, we obtain the following condition for the fact that
U ′nf ∈ L2:
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‖U ′nf‖2 =
∞∑

k=−∞
|b−2nk−n2

ck|2 < ∞. (2.2)

Consequently, the semigroup {U ′n} is defined only for functions f ∈ L2 whose Fourier coefficients satisfy inequality
(2.2) for any positive number n, i.e., for k → −∞, they decrease faster than any exponent, for example, as b−k2

.
We denote the subset of such functions by D+. This semigroup is noninvertible because the inverse operator U ′−1

is not even defined on the entire subset D+ ⊂ L2. Thus, we obtained the noninvertible system {U ′n} proceeding
from the invertible system {Un}. Noninvertibility was introduced by the averaging operator P and the subset of
functions D+ ⊂ L2. It is obvious that there is an analogy between the operator P and the projection w → w1 and
between the set D+ and the Bogolyubov class of distributions w.

It is also possible to consider the subset of functions D− ⊂ L2 whose Fourier coefficients decrease faster
than the exponent as k → ∞. Then, inequality (2.2) holds for any n ≤ 0. Consequently, a noninvertible semigroup
that evolves into the “past” as n → −∞ is defined on the subset D−. Thus, the predominant time direction n is
determined by a choice of the subset D+ or D−. On the subset D+ ∩ D−, the semigroup {U ′n} is invertible in the
sense that both directions of n are equivalent.

3. One-Dimensional Motion. Change of Coordinates x → y. In the one-dimensional case, we denote
the coordinates of the centers and velocities of the spheres by x = (x1, . . . , xN ) and v = (v1, . . . , vN ), respectively.
The spheres are enumerated from left to right, so that the following inequalities hold:

0 ≤ x1 ≤ x2 − d1 ≤ . . . ≤ xN − (N − 1)d1 ≤ 1. (3.1)

Denote this simplex by Dx and the phase space Dx × R
N by Φx. Thus, the centers of the spheres are within the

segment [0, a] (a = 1 + (N − 1)d1), which in this case plays the role of the set Ω. The collision laws are strongly
simplified. Upon reflection from the ends of the segment [0, a], the spheres acquire opposite velocities, and during
collision with each other, they interchange velocities. In the Liouville equation (1.4), vi · ∇i is replaced by vi∂/∂xi.

However, if the probability density w(t, x, v) is specified only in the simplex (3.1), the s-particle projections
cannot be determined. Therefore, we continue the function w to the set [0, a]N × R

N by virtue of the symmetry
property. Let S be the group of permutations of the numbers 1, 2, . . . , N . If σ ∈ S, we denote by σ the following
linear maps:

x → (xσ−1(1), . . . , xσ−1(N)), (x, v) → (σx, σv), f(x, v) → f(σ−1x, σ−1v).

The set of simplices σDx (σ ∈ S) covers the cube [0, a]N , except for the slots |xi − xj | < d1 (1 ≤ i < j ≤ N), in
which we set w = 0 for any v ∈ R

N . On the set σΦx, we define the probability density by the equality w = σ(w|Φx ).
Here w

∣∣∣
Φx

is the narrowing of the function w on set Φx.

We make the change of coordinates:

xi → yi = xi − (i − 1)d1 (i = 1, . . . , N).

In this case, the simplex Dx becomes D:

0 ≤ y1 ≤ y2 ≤ . . . ≤ yN ≤ 1. (3.2)

The simplices σD (σ ∈ S) cover the unit cube Q1 = [0, 1]N without slots and overlaps. The larger cube Q2

= [−1, 1]N is similarly covered by reflections Q1 in the coordinate planes. Thus, the group of reflections R arises.
An element ρ ∈ R acts by the formula ρy = (χ1y1, . . . , χNyN), where χi = ±1 (1 ≤ i ≤ N). Finally, by shifting
the cube Q2 by vectors with even integer coordinates, it is possible to cover the entire space R

N . We denote the
corresponding group of translations by T . The groups R and T are commutable and are permutable with each
element from S and RS, respectively. The reflection ρ ∈ R and translation τ ∈ T by the vector τ̄ , as well as the
permutation, generate linear operators

(ρf)(y, v) = f(ρ−1y, ρ−1v), (τf)(y, v) = f(y − τ̄ , v).

In contrast to the permutations and reflections, the translations do not change the velocity.
Let w′(t, y, v) = w(t, x, v) be a solution of the Liouville equation in the phase space Φ = D×R

N that satisfies
the boundary conditions. Continuing it with the aid of the group S [w′ = σ(w′|Φ) to σΦ (σ ∈ S)], we obtain the
solution in the set Φ1 = Q1 × R

N .
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Next, we continue w′ from Φ1 to Φ2 = Q2 × R
N using the group R. This continuation of w′|Φ2 is invariant

with respect to the group R by construction, but it will also be invariant with respect to the group S by virtue of
the permutability of R with each element from S. Then, we continue w′ from Φ2 to R

2N using the group T . As a
result, we have a solution of the Liouville equation in R

2N that is invariant with respect to the group TRS. If the
initial value w′

0(y, v) specified on Φ is continued to R
2N as is indicated above, the solution is represented by the

explicit formula

w′(t, y, v) = w′
0(y − vt, v). (3.3)

In the coordinates y, we have a system of seemingly noninteracting particles. Therefore, each s-particle projection
is uniquely determined by the initial value.

4. Kinetic Equation. We express the one-particle projection w1 in the coordinates x in terms of the
symmetrical probability density w′ in the coordinates y. By the definition, we have

w1(t, x1, v1) =
∫

w(t, x, v) dx2 dv2 · · · dxN dvN , (4.1)

where the integration domain is ([0, a]×R)N−1. The change of variables x → y is possible only in the simplices (3.1)
and (3.2); therefore, we reduce the integral (4.1) to an integral over the subset of the set Φx using the symmetry of
the function w.

We denote by Π a hyperplane with fixed x1 and v1. The integral (4.1) is taken over the variables x and v

which belong to the union of subsets σΦx∩Π for all σ ∈ S. We map the subset σΦx∩Π to Φx using the permutation
σ−1, make the change of coordinates x → y and velocities v → v′ = v, and then map the result to σΦ using the
permutation σ. We have the integral of the function w′(t, y, v′) = w(t, x, v) over the set⋃

σ∈S

σΦ ∩ {y1 = x1 − (σ−1(1) − 1)d1, v
′
1 = v1}

=
N⋃

i=1

⋃
α1,...,αi−1

{0 ≤ yα1 , . . . , yαi−1 ≤ η ≤ yαi , . . . , yαN−1 ≤ 1} × {v′1 = v1}, (4.2)

where y1 = η = x1 − (i − 1)d1; {α1, . . . , αN−1} = M ′ = {2, . . . , N}; the union is taken over all subsets
{α1, . . . , αi−1} ⊂ M ′, which contain i − 1 elements. We note that here we first take the union over all σ that
satisfy the condition σ(i) = 1 and then take the union over i.

We calculate the integral of the following function over the set (4.2):

w′(t, y, v′) = w′
1(t, y1, v

′
1)w

′
1(t, y2, v

′
2) · · ·w′

1(t, yN , v′N ).

Since in the coordinates y, the spheres are seemingly noninteracting, this distribution means random, i.e., indepen-
dent, motion of the spheres. However, this independence is not only a consequence of the absence of interaction but
is also ensured by the special initial 1-multiplicative distribution. In Sec. 5, we consider more general s-multiplicative
initial distributions. Then, the solution for t > 0 will also be s-multiplicative; therefore, the motion of the spheres
is independent (in the coordinates y). In such cases, physicists do not confine themselves to a consideration of
1-multiplicative distributions because unaccounted small interactions are assumed to randomize the state of the
system. Mathematicians attempt to consider the most general case.

The function w′ is considered normalized; therefore, the integral of w′
1 over the set [0, 1] × R is equal to 1.

We obtain

w1(t, x1, v1) =
N∑

i=1

w′
1(t, η, v1)

( N − 1
i − 1

)( η∫

0

∫

R

w′
1(t, y2, v

′
2) dy2 dv′2

)i−1( 1∫

η

∫

R

w′
1(t, y2, v

′
2) dy2 dv′2

)N−i

. (4.3)

We let N → ∞ for constants z = (i− 1)/(N − 1) and ε = (N − 1)d1. The quantity η = x1 − εz and, hence, and the
integrals in formula (4.3) do not depend on N . If the first of these integrals is denoted by p, the second integral
will be equal to 1 − p (0 < p < 1). Then, according to the limiting theorem of probability theory, the sum (4.3)
converges to the integral

1∫

0

w′
1(t, η, v1)δ(z − p) dz =

w′
1(t, η, v1)

1 − dp/dz

∣∣∣
z=p
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(see [5]). Thus,

w1(t, x1, v1) = w′
1(t, y1, v1)(1 + ε∂p(t, y1)/∂y1)−1, (4.4)

where

x1 = y1 + εp(t, y1), p(t, y1) =

y1∫

0

∫

R

w′
1(t, y2, v

′
2) dy2 dv′2.

Since there is a single-valued map w′
1(0, y1, v1) → w′

1(t, y1, v1) specified by formula (3.3), by virtue of equality
(4.4), we have the semigroup

w1(0, x1, v1) → w1(t, x1, v1).

The infinitesimal operator of this semigroup gives the kinetic equation for w1(t, x1, v1)

∂w1

∂t
+

∂(uw1)
∂x1

= 0, (4.5)

where

u =
(
v1 − ε

∫

R

v2w1(t, x1, v2) dv2

)/ (
1 − ε

∫

R

w1(t, x1, v2) dv2

)

[One needs to differentiate expression (4.4) with respect to t and use the Liouville equation for w′
1(t, y1, v1)]. Equality

(4.4) also implies the boundary conditions on the solution of the kinetic equation follow also: for all v1 ∈ R,

w1(t, x1, v1) = w1(t, x1,−v1) at x1 = 0 and x1 = a. (4.6)

The kinetic equation (4.5) differs from the Boltzmann equation in structure. First, it is invertible: the change
of variables t → −t and v1 → −v1 does not change its form. Second, if the initial distribution is homogeneous (i.e.,
does not depend on x1:

w1(0, x1, v1) = f(v1)

and satisfies the boundary conditions (4.6) [f(−v1) = f(v1) for any v1 ∈ R], it remains unchanged for t > 0, whereas
the solution of the Boltzmann equation with any homogeneous initial value converges with time to the Maxwell
distribution, according to the H-theorem. Third, Eq. (4.5) is applicable for any concentration of spheres ε. The
kinetic equation (4.5) can be regarded as a Vlasov type equation because it also has a solution that contains a
δ-function. This particular solution is an analog of the hydrodynamic equations.

The kinetic equation (4.5) is obtained in [6]. The one-dimensional model of elastic spheres is generally
formulated in [7].

5. Bogolyubov Chain. Definition 1. For N = ms, a solution of the Liouville equation (in the coordi-
nates y) that has the form

w′(t, y, v) =
m∏

i=1

w′
s(t, y(i−1)s+1, v(i−1)s+1, . . . , yis, vis) (5.1)

will be called s-multiplicative. Its s-particle projection w′
s will be considered symmetric.

The kinetic equation (4.5) is derived in the class of 1-multiplicative functions w′. Actually, it is valid for a
broader set of motions.

Theorem 1. For any s ≥ 1 in the class of s-multiplicative functions w′ (in the coordinates y), the 1-particle

projection w1 (in the coordinates x) in the limit as N → ∞ and fixed s and ε = Nd1 satisfies the closed kinetic

equation (4.5).
Proof. Function (5.1), generally speaking, is not completely symmetric. Therefore, it needs to be sym-

metrized, i.e., it is necessary to take the average of

σw′ = w′
s(t, yσ(1), v

′
σ(1), . . . , yσ(s), v

′
σ(s)) · · · w′

s(t, yσ(N−s+1), v
′
σ(N−s+1), . . . , yσ(N), v

′
σ(N))

over all permutations σ ∈ S. The set M = {1, . . . , N} is divided into subsets Mj , which contain the indices of the
variables of the jth factor of the product σw′. We assume that 1 ∈ Mj0 and β elements from Mj0\{1} are located
on the left of η [i.e., belong to the set {α1, . . . , αi−1}; see (4.2)], and the remaining elements are on the right. We
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denote by lγ the number of subsets Mj (j 
= j0) that have γ elements on the left of η. Since on the left of η there
are i − 1 numbers, and on the right N − i numbers, the introduced quantities satisfy the equations

s∑
γ=1

γlγ + β = i − 1,

s−1∑
γ=0

(s − γ)lγ + s − 1 − β = N − i. (5.2)

The integral of σw′ over the set (4.2) is equal to

w1(t, x1, v1) =
∑
i,β

∑
l0,...,ls

w′(β)
s (t, η, v1)

( s − 1
β

)( m − 1
l0 . . . ls

) s∏
γ=0

(( s

γ

)
pγ

)lγ
, (5.3)

where w
′(β)
s is obtained from w′

s by the change y1 = η, v′1 = v1 and by integration over the remaining variables
y2, . . . , ys and v′2, . . . , v

′
s on the set [0, η]β × [η, 1]s−1−β × R

s−1; similarly, pγ is obtained by integrating w′
s on the

set [0, η]γ × [η, 1]s−γ × R
s. The expression (5.3) does not depend on the choice of the permutation σ, and, hence,

is equal to the average over σ.
In equalities (5.2) for N → ∞, it is possible to discard the number β compared to the remaining terms.

Consequently, the index i and the quantity η do not depend on β; therefore, the sum over β is equal to w′
1(t, η, v1).

After that, we can retain only the summation over l0 ≥ 0, . . . , ls ≥ 0 (l0 + . . . + ls = m − 1) expressing i in terms
of these indices from the first equation (5.2), where β = 0. As a result of these transformations, expression (5.3)
becomes

w1(t, x1, v1) =
∑

l0+...+ls=m−1

w′
1(t, η, v1)

( m − 1
l0 . . . ls

) s∏
γ=0

qlγ
γ , (5.4)

where

qγ =
( s

γ

)
pγ ≥ 0,

s∑
γ=0

qγ = 1.

We let N → ∞ for fixed s, zγ = lγ/(m− 1) (0 ≤ γ ≤ s), and ε = (N − s)d. Under these conditions, the sum
on the right of (5.4) converges to the integral

w1(t, x1, v1) =
∫

z1+...+zs≤1

w′
1(t, η, v1)δ(z1 − q1, . . . , zs − qs) dz1 · · · dzs = w′

1(t, η, v1)J−1
∣∣∣
z1=q1, ..., zs=qs

.

We calculate the Jacobian

J =
∂(z1 − q1, . . . , zs − qs)

∂(z1, . . . , zs)
= 1 + ε

∫

R

w′
1(t, η, v2) dv2.

At the point z1 = q1, . . . , zs = qs, the following equality holds:

η = x1 − εs−1
s∑

γ=1

γqγ = x1 − ε

η∫

0

∫

R

w′
1(t, y2, v2) dy2 dv2.

Thus, we obtain formula (4.4), quod erat demonstrandum.
Theorem 2. For any s ≤ s′ in the class of symmetrized s′-multiplicative functions w′ (in the coordinates y),

the s-particle projection ws (in the coordinates x) in the limit as N → ∞ has the form

s∏
i=1

w1(t, xi, vi), where

w1(t, x1, v1) is expressed in terms of w′
1(t, y1, v1) by formula (4.4).

The proof is similar to the proof of Theorem 1. The difference is as follows. The distinguished pairs of
variables yi and v′i (1 ≤ i ≤ s) now can be in different factors of the product σw′, depending on the permutation σ.
The fraction of those permutations for which each factor contains not more than one distinguished pair tends to 1
as N → ∞. Therefore, in the limit, the s-particle projection ws is itself a 1-multiplicative one.

To obtain the multidimensional generalization of the kinetic equation (4.5), it is necessary to consider
unsymmtrized multiplicative solutions w′ of the Liouville equations in the coordinates y. In the initial phase space
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Φx, they specify multivalued solutions, whose branches are sewed together on the boundary in such a way that the
uniqueness theorem for the phase trajectories remains valid.

Theorem 3. For any s ≤ s′ in the class unsymmetrized s′-multiplicative functions w′ (in the coordinates y),
the s-particle projection ws (in the coordinates x) in the limit as N → ∞ has the form

ws(t, x1, v1, . . . , xs, vs) = w′
s(t, y1, v1, . . . , ys, vs)

s∏
i=1

(
1 + ε

∫

R

w′
1(t, yi, vs+1) dvs+1

)−1

,

where

xi = yi + ε

yi∫

0

∫

R

w′
1(t, ys+1, vs+1) dys+1 dvs+1 (i = 1, . . . , s),

the function w′
s satisfies the Liouville equation (in the coordinates y) and w′

1 is its 1-particle projection.

According to Theorem 2, all s-particle projections are uniquely expressed in terms of the 1-particle projection.
Thus, for one-dimensional motion in the class of multiplicative distributions, for which the kinetic equation is valid,
the Bogolyubov assumption is satisfied.

The question arises: Is the kinetic equation (4.5) valid in the class of arbitrary distributions? No it is not.
Indeed, we consider the half-sum of two 1-multiplicative solutions of the Liouville equation in the coordinates y.
In the limit as N → ∞, it corresponds to the one-particle projection w1, which is the half-sum of two solutions of
Eq. (4.5). Since this equation is nonlinear, the function w1 does not satisfy it. The function w1 cannot be a solution
of any closed kinetic equation because it is no uniquely determined by the initial value at t = 0.

Does the kinetic equation exist in the class of arbitrary distributions in the case of low concentrations of
the spheres ε? The Boltzmann equation is valid only for diluted gases. To answer this question, we calculate the
integral of an arbitrary function w′ over the set (4.2) by expansion in a series of powers of d1 for fixed N . We obtain

w1(t, x1, v1) = w′
1(t, x1, v1)

− ε

∫

R

(
w′

2(t, x1, v1, x1, v2) +

x1∫

0

∂w′
2

∂y1
(t, x1, v1, y2, v2) dy2

)
dv2 + O(ε2). (5.5)

From this it follows that in the class of arbitrary distributions, the Bogolyubov chain is not closed as a first order
of accuracy in ε. In the class of symmetrized multiplicative functions, the projection w′

2 (in the limit as N → ∞)
is uniquely expressed in terms of w′

1, and in this case, expansion (5.5) is also obtained from formula (4.4).
Without giving a proof, we note that the kinetic equation (4.5) can also be obtained by heuristic reasoning

similar to that used in the theory of gases. Then, the class of multiplicative distributions does not appear explicitly
but there is the illusion that the kinetic equation is valid in the class of arbitrary distributions.

6. Equations of Hydrodynamics. An analog of the equations of multivelocity hydrodynamics (plasma)
is obtained as a particular solution of the kinetic equation (4.5) in the form

w(t, x, v) =
k∑

i=1

ρi(t, x)δ(v − ui(t, x)) (6.1)

(the subscript 1 is omitted). Setting the factors of the δ-function and its derivative on the δ-function support equal
to zero, we first satisfy the kinetic equation, and second, obtain a closed system of equations for the unknown
functions ρi and ui (i = 1, . . . , k). For example, for k = 2, we obtain the following system of hydrodynamic
equations:

∂ρi

∂t
+

∂ (ρiui)
∂x

= 0,
∂ui

∂t
+

ui − ε(ρ1u1 + ρ2u2)
1 − ε(ρ1 + ρ2)

∂ui

∂x
= 0 (i = 1, 2). (6.2)

The boundary conditions (4.6) for the kinetic equation entails different boundary conditions for system (6.2),
in particular, ρ1 = ρ2 and u1 = −u2 for x = 0 and x = a.

The physical meaning of Eqs. (6.2) is as follows. In the vicinity of each point x, there are two sorts of spheres
that move at velocities u1 and u2 and have concentrations ρ1 and ρ2, respectively. The temperature and pressure
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of this one-dimensional gas can be determined in the same way as for a three-dimensional gas. Then, the similarity
between Eqs. (6.2) and the gas-dynamic equations becomes even more noticeable. However, since a one-dimensional
gas does not exist in nature, this mechanical analogy is hardly of great scientific interest. The system of equations
of the form (6.2) is of significance for the theory of partial equations as heuristic examples.

The problem (4.5), (4.6) is generally solvable in time. Indeed, if

h(0, x) =
∫

R

w(0, x, v) dv < ε−1, (6.3)

then formula (4.4) uniquely defines the initial function w′(0, y, v) and, hence, the solution w′(t, y, v) of the Liouville
equation in the coordinate system y that is defined for all t ≥ 0; the solution w(t, x, v) of the kinetic equation (4.5)
is expressed in terms of the latter solution. Inequality (6.3) is satisfied in the sense of the one-particle projection.
The sum of the diameters of the spheres located on a small interval of length ∆x of the axis x, which is equal to
d1Nh∆x = εh∆x, should not exceed ∆x since the spheres are absolutely rigid. This implies that εh ≤ 1. However,
collisions of higher order than paired collision are eliminated from the consideration, and, hence, εh < 1.

However, the solution of the hydrodynamic equations (6.2) can cease to exist at some time t because of
violation of the uniqueness of the functions ui(t, x). In this case, the function (6.1) as a solution of the kinetic
equation retains its meaning and continues to exist for all t ≥ 0.

I thank B. A. Lugovtsov for useful discussions.
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